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Abstract. We predict that a single-electron transistor (SET) whose two tunnel junctions are
identical asymmetric tunnelling barriers (ATBs) can give rise to a finite tunnelling current, at
finite temperatures and for finite fixed gate voltages, in the absence of an applied voltage. This
new theoretical transport property of a SET with identical ATBs is derived from the orthodox
discussion of the Coulomb blockade oscillations, taking account of asymmetry in the potential
shape of the tunnelling barriers. In this paper we use trapezoidal tunnelling barriers as the
ATBs to make our proposed SET, and simulations of the SET are performed on the basis of the
semiclassical approach.

It is well known that an asymmetric tunnelling barrier (ATB), whose potential profile is
asymmetrical, gives a voltage offset in the conductance minimum [1, 2]; that is, a larger
tunnelling current flows from one electrode of an ATB to the other when the electrode
of lower internal workfunction is positively biased, which we call an asymmetric current–
voltage characteristic. The asymmetry in the current–voltage characteristic arises solely
from asymmetry in the potential barrier shape. It has previously been theoretically [3]
and experimentally [4] demonstrated that two low-capacitance tunnelling junctions in series
can produce a large degree of asymmetry in the current–voltage characteristic outside the
Coulomb blockade region when at least one of the two junctions is an ATB instead of a
symmetric tunnelling barrier (STB). The two-junction system produced in the experiment
described in [4] consisted of a STB and an ATB, and a GaAs–AlGaAs heterostructure was
used as its ATB. In our previous paper [5], quantitative simulations of a single-electron
transistor (SET) with one ATB were first presented. The present paper predicts another
interesting feature of a SET with two identical ATBs: that, in the absence of an applied
voltage, a finite tunnelling current flows at finite temperatures and for finite fixed gate
voltages.

We here take identical trapezoidal potential (tunnelling) barriers as ATBs, and these are
set in the same direction to make a SET as shown in figure 1. We assume that there is
no zero-bias misalignment of the Fermi levels in this set-up. The semiclassical tunnelling
model is used to describe the single-electron transport, and simulations of our SET are
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Figure 1. An energy diagram of trapezoidal potential barriers (above) and a schematic diagram
of a SET with identical ATBs (below).

carried out in terms of the analytic solution described in [6]. Using Kirchhoff’s law for
two loops in the circuit, the equations for the voltageVj across thej th tunnel junction are
given as

V1 = 1

2
V + CG

C6
VG− Ne

C6

V2 = 1

2
V − CG

C6
VG+ Ne

C6

(1)

whereV is the bias voltage,VG is the gate voltage,CG is the gate capacitance,N is the
number of extra electrons in the inner electrode, andC6 = 2C +CG. Also,C is the tunnel
junction capacitance. Assuming that the transmission coefficientT (Ez) for an electron of
energyEz in the z-direction perpendicular to the barriers is much less than unity for given
V , VG, andN , the rate of electron tunnellingr±j through thej th junction, where the index
± relates to the changeN → N ± 1, is represented by a golden rule equation [7]:
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wherevz is the group velocity in thez-direction,kt is the transverse momentum parallel
to the x–y plane,f (E) is the Fermi distribution function,µ is the chemical potential of
the electrodes, and−1E±j is the free-energy change of the system associated with electron
tunnelling across thej th junction. The equations for1E±j are
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Equation (2) can be rewritten as

r±j (N) =
2e

(2π)3
1

h̄

∫ ∞
0

dEz T (Ez)
∫ ∞
−∞

d2kt f (E − µ)[1− f (E − µ−1E±j )]. (4)

According to the relationsEz = h̄2k2
z /2m

∗ (wherem∗ is the effective mass), and
E = h̄2(k2

x + k2
y + k2

z )/2m
∗, equation (4) is numerically solved for givenV , VG, and

N . We precisely calculateT (Ez) by solving the discretized one-dimensional Schrödinger
equation

h̄2

2m∗

[
9(z+ s)− 29(z)+9(z− s)

s2

]
= [Uj(z, Vj )− Ez]9(z) (5)

wheres is the step size andUj(z, Vj ) is the potential profile of thej th tunnelling barrier
in the z-direction, wherez is measured from the first interface of thej th tunnelling barrier,
crossed by a tunnelling electron, to the second interface. Using the algorithm described in
[8], the wavefunction at the positionz = 0 on thej th tunnelling barrier can be solved as

9(0) = Au(+)+ Bu(−)
where u(+) and u(−) represent the incident and reflected wave, respectively. The
transmission coefficient is then given by

T (Ez) = 1− |B|2/|A|2. (6)

Here we write the potential profilesUj as

Uj(z, Vj ) =
{
µ+ φ1+ (z/d)(φ2− eVj − φ1)−1φ(z) (for r+1 andr−2 )

µ+ φ2− (z/d)(φ2− eVj − φ1)−1φ(z) (for r−1 andr+2 )
(7)

whereφ1 andφ2 are the high and low internal workfunctions, respectively,d is the barrier
thickness, and1φ(z) is the image potential in the barriers. Here1φ is approximately given
as [9]

1φ(z) = 5.75d/[κz(d − z)] (eV) (8)

where the dimensions are in̊angstr̈oms andκ is the high-frequency dielectric constant.
We are here interested in an anomalous current versus gate voltage (I–VG) charact-

eristic of our proposed SET in the absence of an applied voltage, and therefore give a
simple argument regarding the new physical effect. Let us now set the bias voltageV to
zero. We shall restrict ourselves to the range [0, e/C6 ] of offset voltages applied at the
inner electrode sincem(e/C6) with m = 0,±1,±2, . . . are equivalent offsets. When the
Coulomb voltageVc = e/2C6 is applied across the second tunnel junction by means of
the gate voltage (VG = −e/2CG) at nonvanishing but low temperatures,T � 1E±j , well
defined Coulomb blockade oscillations in the energy levels of the inner electrode occur.
(If T = 0, no electron tunnelling events occur.) Then the possible charge states of the
inner electrode are onlyN = 0 and 1, which correspond to the Fermi energies,−eVc and
+eVc, of the inner electrode, respectively, measured relative to the Fermi energy of the
outer electrodes. The ensemble distributionσ(N) as a function ofN can be obtained by
the requirement for a transition between the two adjacent charge states in a steady state:

σ(0)[r+1 (0)+ r+2 (0)] = σ(1)[r−1 (1)+ r−2 (1)] (9)

where
∞∑

N=−∞
σ(N) = 1.
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Figure 2. Simulated transport properties of the SET with identical trapezoidal tunnelling barriers.
R6 = 2R, whereR is the tunnelling resistance per junction for very low bias voltages and
temperatures. (a)I–VG characteristics forV = 0. (b) I–V characteristics for different fixed
values ofVG.

BecauseV = 0, we haver+1 (0) = r−2 (1) and r+2 (0) = r−1 (1). Substituting these two
equations into (9), the relationshipσ(0) = σ(1) ≈ 1/2 is obtained. Taking into account
that r+2 (1) ≈ 0 andr−2 (0) ≈ 0, the average currentI (V, VG) through the two junctions is
then evaluated as

I (0,−e/2CG) = −e
∞∑

N=−∞
σ(N)[r+2 (N)− r−2 (N)] ≈ −e[σ(0)r+2 (0)− σ(1)r−2 (1)]

≈ (e/2)[r−2 (1)− r+2 (0)]. (10)

Since we already know the key relation for ATBs, i.e.,r−2 (1) > r+2 (0), we finally note that

I (0,−e/2CG) > 0. (11)
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This final expression indicates that a zero-bias current flows in a SET with identical ATBs at
finite temperatures and for finite fixed gate voltages. Note that no electron heating occurs in
the transport process described here, i.e. the temperatureT is not increased, since electrons
which have tunnelled across each junction biased well below the Coulomb gap do not release
kinetic energy. In order to obtain a large currentI in (10), r−2 (1) must be much larger than
r+2 (0), and thus the effective thickness of the two barriers for a tunnelling electron at the
Fermi level should be rather different for the two charge statesN = 0, 1. In the case in
which trapezoidal tunnelling barriers are used as the ATBs, considering the situation defined
in (7), this requirement forI (0,−e/2CG)� 0 is satisfied when

φ2 < eVc < φ1. (12)

Here we assume that the last terms of the image potential1φ(z) in equation (7) are
negligible.

Even if the bias voltageV is slightly decreased and becomes negative, a positive current
still flows through the two junctions, namely

I (V,−e/2CG) > 0 V < 0 (13)

which, at low temperatures, becomes

I (V,−e/2CG) = −e
∞∑

N=−∞
σ(N)[r+2 (N)− r−2 (N)]

≈ − e[σ(0)r+2 (0)− σ(1)r−2 (1)] > 0 V < 0. (14)

Substituting (9) into (14), we find that equation (13), describing ‘electron pumping’, requires
that

r−1 (1)
r+1 (0)

<
r−2 (1)
r+2 (0)

. (15)

On decreasing the bias voltageV from zero, the ratior−1 (1)/r
+
1 (0) increases, while the ratio

r−2 (1)/r
+
2 (0) decreases. When the ratior−1 (1)/r

+
1 (0) just reaches the ratior−2 (1)/r

+
2 (0), the

current through the two junctions stops flowing.
In figure 2 we show simulated transport properties of a SET with identical trapezoidal

tunnelling barriers, choosing the following set of parameters:C = CG = 0.1 aF,d = 18 nm,
φ1 = 8φ2 = 0.8 eV,m∗ = 0.07, andκ = 10. In this case one obtainsVc = 0.27 V satisfying
the condition of large zero-bias current of (12). Figure 2(a) shows theI–VG characteristics
for V = 0. The current peaks are seen atCGVG ∼ m(e/2), as discussed above. Figure 2(b)
shows the current versus bias voltage (I–V ) characteristics for different fixed values ofVG.
The zero-current offset is seen atC6V ∼ −0.1, i.e.V ∼ −0.01 V.

In summary, we predict a zero-bias current to be observable in a SET with identical
ATBs at finite temperatures and for finite fixed gate voltages. Also, it will be possible for
the bias voltageV and the currentI to have opposite signs, i.e. our particular SET will be
able to act as an electron pump.
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